Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads
نویسندگان
چکیده
Traffic accidents on urban roads are a major cause of death despite the development traffic safety measures. However, prediction casualties in road has not been deeply explored previous research. Effective forecasting methods for can improve manner accident warnings, further avoiding unnecessary loss. This paper provides practicable model forecast problems, which ten variables, including time characteristics, weather factors, types, collision and environment conditions, were selected as independent factors. A mixed-support vector machine (SVM) with genetic algorithm (GA), sparrow search (SSA), grey wolf optimizer (GWO) particle swarm optimization (PSO) separately proposed to predict collisions. Grounded 4285 valid collisions, computing results show that SSA-SVM performs effectively compared GWO-SVM, GA-SVM PSO-SVM.
منابع مشابه
Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملPredicting Nucleolar Proteins Using Support-Vector Machines
The intra-nuclear organisation of proteins is based on possibly transient interactions with morphologically defined compartments like the nucleolus. The fluidity of trafficking challenges the development of models that accurately identify compartment membership for novel proteins. A growing inventory of nucleolar proteins is here used to train a support-vector machine to recognise sequence feat...
متن کاملPredicting Time Series with Support Vector Machines
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two diierent cost functions for Support Vectors: training with (i) an insensitive loss and (ii) Huber's robust loss function and discuss how t o c hoose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2023
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su15042944